アブストラクト | BACKGROUND: To effectively prevent, detect, and treat health conditions that affect people during their lifecourse, health-care professionals and researchers need to know which sections of the population are susceptible to which health conditions and at which ages. Hence, we aimed to map the course of human health by identifying the 50 most common health conditions in each decade of life and estimating the median age at first diagnosis. METHODS: We developed phenotyping algorithms and codelists for physical and mental health conditions that involve intensive use of health-care resources. Individuals older than 1 year were included in the study if their primary-care and hospital-admission records met research standards set by the Clinical Practice Research Datalink and they had been registered in a general practice in England contributing up-to-standard data for at least 1 year during the study period. We used linked records of individuals from the CALIBER platform to calculate the sex-standardised cumulative incidence for these conditions by 10-year age groups between April 1, 2010, and March 31, 2015. We also derived the median age at diagnosis and prevalence estimates stratified by age, sex, and ethnicity (black, white, south Asian) over the study period from the primary-care and secondary-care records of patients. FINDINGS: We developed case definitions for 308 disease phenotypes. We used records of 2 784 138 patients for the calculation of cumulative incidence and of 3 872 451 patients for the calculation of period prevalence and median age at diagnosis of these conditions. Conditions that first gained prominence at key stages of life were: atopic conditions and infections that led to hospital admission in children (<10 years); acne and menstrual disorders in the teenage years (10-19 years); mental health conditions, obesity, and migraine in individuals aged 20-29 years; soft-tissue disorders and gastro-oesophageal reflux disease in individuals aged 30-39 years; dyslipidaemia, hypertension, and erectile dysfunction in individuals aged 40-59 years; cancer, osteoarthritis, benign prostatic hyperplasia, cataract, diverticular disease, type 2 diabetes, and deafness in individuals aged 60-79 years; and atrial fibrillation, dementia, acute and chronic kidney disease, heart failure, ischaemic heart disease, anaemia, and osteoporosis in individuals aged 80 years or older. Black or south-Asian individuals were diagnosed earlier than white individuals for 258 (84%) of the 308 conditions. Bone fractures and atopic conditions were recorded earlier in male individuals, whereas female individuals were diagnosed at younger ages with nutritional anaemias, tubulointerstitial nephritis, and urinary disorders. INTERPRETATION: We have produced the first chronological map of human health with cumulative-incidence and period-prevalence estimates for multiple morbidities in parallel from birth to advanced age. This can guide clinicians, policy makers, and researchers on how to formulate differential diagnoses, allocate resources, and target research priorities on the basis of the knowledge of who gets which diseases when. We have published our phenotyping algorithms on the CALIBER open-access Portal which will facilitate future research by providing a curated list of reusable case definitions. FUNDING: Wellcome Trust, National Institute for Health Research, Medical Research Council, Arthritis Research UK, British Heart Foundation, Cancer Research UK, Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Department of Health and Social Care (England), Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), Economic and Social Research Council, Engineering and Physical Sciences Research Council, National Institute for Social Care and Health Research, and The Alan Turing Institute. |
ジャーナル名 | The Lancet. Digital health |
Pubmed追加日 | 2019/10/28 |
投稿者 | Kuan, Valerie; Denaxas, Spiros; Gonzalez-Izquierdo, Arturo; Direk, Kenan; Bhatti, Osman; Husain, Shanaz; Sutaria, Shailen; Hingorani, Melanie; Nitsch, Dorothea; Parisinos, Constantinos A; Lumbers, R Thomas; Mathur, Rohini; Sofat, Reecha; Casas, Juan P; Wong, Ian C K; Hemingway, Harry; Hingorani, Aroon D |
組織名 | Institute of Cardiovascular Science, London.;Health Data Research UK London.;Institute of Health Informatics, University College London, London, UK.;Alan Turing Institute, London, UK.;Chrisp Street Health Centre, London, UK.;Tower Hamlets Clinical Commissioning Group, London, UK.;Stratford Village Surgery, London, UK.;Clinical Effectiveness Group, Queen Mary University of London, London, UK.;Moorfields Eye Hospital, London, UK.;Department of Non-communicable Disease Epidemiology, London School of Hygiene and;Tropical Medicine, London, UK.;Barts Heart Centre, St Bartholomew's Hospital, London, UK.;Massachusetts Veterans Epidemiology Research and Information Center, VA Boston;Healthcare System, Boston, MA, USA.;School of Pharmacy, University College London, London, UK.;Centre for Safe Medication Practice and Research, Department of Pharmacology and;Pharmacy, The University of Hong Kong, Pok Fu Lam, Hong Kong.;National Institute for Health Research, London, UK.;University College London British Heart Foundation Research Accelerator, London,;UK. |
Pubmed リンク | https://www.ncbi.nlm.nih.gov/pubmed/31650125/ |