アブストラクト | Several statistical methods have been proposed to detect adverse drug reactions induced by taking two drugs together. These suspected adverse drug reactions can be discovered through post-market drug safety surveillance, which mainly relies on spontaneous reporting system database. Most previous studies have applied statistical models to real world data, but it is not clear which method outperforms the others. We aimed to assess the performance of various detection methods by implementing simulations under various conditions. We reviewed proposed approaches to detect signals indicating drug-drug interactions (DDIs) including the Omega shrinkage measure, the chi-square statistic, the proportional reporting ratio, the concomitant signal score, the additive model and the multiplicative model. Under various scenarios, we conducted a simulation study to examine the performances of the methods. We also applied the methods to Korea Adverse Event Reporting System (KAERS) data. Of the six methods considered in the simulation study, the Omega shrinkage measure and the chi-square statistic with threshold = 2 had higher sensitivity for detecting the true signals than the other methods in most scenarios while controlling the false positive rate below 0.05. When applied to the KAERS data, the two methods detected one known DDI for QT prolongation and one unknown (suspected) DDI for hyperkalemia. The performance of various signal detection methods for DDI may vary. It is recommended to use several methods together, rather than just one, to make a reasonable decision. |