アブストラクト | While machine learning approaches can enhance prediction ability, little is known about their ability to predict 30-day readmission after hospitalization for Chronic Obstructive Pulmonary Disease (COPD). We identified patients aged >/=40 years with unplanned hospitalization due to COPD in the Diagnosis Procedure Combination database, an administrative claims database in Japan, from 2011 through 2016 (index hospitalizations). COPD was defined by ICD-10-CM diagnostic codes, according to Centers for Medicare and Medicaid Services (CMS) readmission measures. The primary outcome was any readmission within 30 days after index hospitalization. In the training set (randomly-selected 70% of sample), patient characteristics and inpatient care data were used as predictors to derive a conventional logistic regression model and two machine learning models (lasso regression and deep neural network). In the test set (remaining 30% of sample), the prediction performances of the machine learning models were examined by comparison with the reference model based on CMS readmission measures. Among 44,929 index hospitalizations for COPD, 3413 (7%) were readmitted within 30 days after discharge. The reference model had the lowest discrimination ability (C-statistic: 0.57 [95% confidence interval (CI) 0.56-0.59]). The two machine learning models had moderate, significantly higher discrimination ability (C-statistic: lasso regression, 0.61 [95% CI 0.59-0.61], p = 0.004; deep neural network, 0.61 [95% CI 0.59-0.63], p = 0.007). Tube feeding duration, blood transfusion, thoracentesis use, and male sex were important predictors. In this study using nationwide administrative data in Japan, machine learning models improved the prediction of 30-day readmission after COPD hospitalization compared with a conventional model. |
ジャーナル名 | COPD |
Pubmed追加日 | 2019/11/12 |
投稿者 | Goto, Tadahiro; Jo, Taisuke; Matsui, Hiroki; Fushimi, Kiyohide; Hayashi, Hiroyuki; Yasunaga, Hideo |
組織名 | Department of Clinical Epidemiology and Health Economics, School of Public;Health, The University of Tokyo, Tokyo, Japan.;Graduate School of Medical Sciences, The University of Fukui, Fukui, Japan.;Department of Health Services Research, The University of Tokyo, Tokyo, Japan.;Department of Health Care Informatics, Graduate School of Medicine, Tokyo Medical;and Dental University, Tokyo, Japan.;Department of Emergency Medicine, University of Fukui Hospital, Fukui, Japan. |
Pubmed リンク | https://www.ncbi.nlm.nih.gov/pubmed/31709851/ |